Power line maintenance and inspection are essential to avoid power supply interruptions, reducing its high social and financial impacts yearly. Automating power line visual inspections remains a relevant open problem for the industry due to the lack of public real-world datasets of power line components and their various defects to foster new research. This paper introduces InsPLAD, a Power Line Asset Inspection Dataset and Benchmark containing 10,607 high-resolution Unmanned Aerial Vehicles colour images. The dataset contains seventeen unique power line assets captured from real-world operating power lines. Additionally, five of those assets present six defects: four of which are corrosion, one is a broken component, and one is a bird's nest presence. All assets were labelled according to their condition, whether normal or the defect name found on an image level. We thoroughly evaluate state-of-the-art and popular methods for three image-level computer vision tasks covered by InsPLAD: object detection, through the AP metric; defect classification, through Balanced Accuracy; and anomaly detection, through the AUROC metric. InsPLAD offers various vision challenges from uncontrolled environments, such as multi-scale objects, multi-size class instances, multiple objects per image, intra-class variation, cluttered background, distinct point-of-views, perspective distortion, occlusion, and varied lighting conditions. To the best of our knowledge, InsPLAD is the first large real-world dataset and benchmark for power line asset inspection with multiple components and defects for various computer vision tasks, with a potential impact to improve state-of-the-art methods in the field. It will be publicly available in its integrity on a repository with a thorough description.
Different bounding box colors mean different classes (not normal/defective objects).
Normal on top in green and defective at the bottom in red.
The data is released under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0). In particular, it is not allowed to use the dataset for commercial purposes. If you are unsure whether or not your application violates the non-commercial use clause of the license, please contact us.
@article{doi:10.1080/01431161.2023.2283900,
author = {André Luiz Buarque Vieira e Silva, Heitor de Castro Felix, Franscisco Paulo Magalhães Simões, Veronica Teichrieb, Michel dos Santos, Hemir Santiago, Virginia Sgotti and Henrique Lott Neto},
title = {InsPLAD: A Dataset and Benchmark for Power Line Asset Inspection in UAV Images},
journal = {International Journal of Remote Sensing},
volume = {44},
number = {23},
pages = {1-27},
year = {2023},
publisher = {Taylor & Francis},
doi = {10.1080/01431161.2023.2283900},
URL = {https://doi.org/10.1080/01431161.2023.2283900},
eprint = {https://doi.org/10.1080/01431161.2023.2283900},
}
@InProceedings{Vieira_2024_WACV,
author = {e Silva, Andr\'e Luiz Vieira and Sim\~oes, Francisco and Kowerko, Danny and Schlosser, Tobias and Battisti, Felipe and Teichrieb, Veronica},
title = {Attention Modules Improve Image-Level Anomaly Detection for Industrial Inspection: A DifferNet Case Study},
booktitle = {Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)},
year = {2024},
pages = {8246-8255}
}